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Synopsis 
A simplified model is used for calculating the time-dependent velocity of polymeric 

fluid in an extruder. The flow properties of the fluid are characterized by a simple 
constitutive equation based on two parameters: a constant viscosity p and a constant 
elasticity modulus G. It was found that the transient velocity fluctuates periodically, 
and the time t ,  needed to restore the steady-state velocity from a disturbance varies with 
the ratio G / p  and the dimensionless group pH2G/p2 ,  where p is the density of t,he flnid 
and H is  the screw dept,h of the extruder. 

Introduction 
The starting or sudden perturbation of an extrusion process sometimes 

involves a fluctuation of volume flow rate during the transient period, 
which results in a wasting of materials. Thus, the transient period t c  for 
restoring steady-state velocity after a disturbance should be as short as 
possible. In this work the effect of fluid properties on t t  was investigated. 

Mathematical Model 
McKelvey' has proposed a simplified flow geometry for simulating the 

flow patterns observed in the channel along an extruder screw. This 
model is illustrated in Figures 1 and 2. Flow is induced in the channel 
(Fig. 2)  by the movement of the channel wall at 2 2  = H in the direction 
indicated by the vector V at an angle 0 to the x 1  axis. To simplify the 
problem and still retain the essential features of the flow under investiga- 
tion, we have made the following assumptions : 

(I) Molten material transported as a continuous medium in the extruder. 
(2)  No leakage through the radial clearance between the flight and the 

(3) Incompressible fluid. 
(4)  Negligible viscous dissipation .effects; i.e., flow assumed to be 

(5)  The angle e is zero, and the components of the velocity are assumed 

inside barrel surface. 

isothermal. 

to be: 
v 1  = v 1 ( z 2 , 2 3 0  

v2 = v3  = 0 
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Vig. 1. Geometry of extruder screw. 

Fig. 2. Coordinate axes used in derivation of the field equations. 

(6) Flow field infinite in extent in the x1 direction (this implies no 

The continuity equation states that 
vclocity gradients or shear stress gradients in the x1 direction) 

avl/bxl + i3v2/i3x2 + av3/bx3 = o (1) 
and we see that the assumed velocity distribution in assumption (5) above 
satisfies eq. (1) perfectly. 

The equations of motion are (neglecting the body forces) : 

- ap/axl + ap12/ax2 + ap13/aX3 = p(avl/at) 
- bp/bxz + bp22/bx2 + bp*/bx3 = 0 

- dp/dx3 + *,,/ax3 + bp*/dxz = 0 

(2) 

(3) 

(4) 

where p is the hydrostatic pressure, and pij are the components of the shear 
stress tensor. It should be noted here that p is a scalar variable to be 
determined, together with the velocity components vl,  v2, and v3, from 
eqs. (1)-(4) after a suitable constitutive equation for p i ,  has been selected. 
The following analysis reveals that p is not a function of time. 

For the sake of retaining the viscoelastic nature of the medium and 
yet keeping things simple enough to be manageable we decided to use the 
White-Metzner2 constitutive equation. This equation, expressed in car- 
tesian tensor form, is 

2~e:ei*i - p r j / h  = b p i j / a t  + vk(apij/axk) 
- Pe(dVj/w - Pkj(bVt/bXk) (5) 
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where 2eZ = d u j / b x I  + d v j / b x s ,  G is the modulus of elasticity (a con- 
stant), and A is the relaxation time, a function of the invariants of the 
stress tensor. To simplify the analysis further, we have assumed the re- 
laxation time to be constant, which is equivalent to assuming a constant 
viscosity, since p = AG. 

Equations for each of the six independent components of the shear stress 
tensor can be written from eq. (Ti) as follows: 

- p l l / h  = d p l l / b t  - 2plZ(dvl/bX2) - &)13(b2) l /bX3)  (6) 
-p22/A = bp22/bt (7) 
-p33/A = bp33/dt (8) 

( 1 0 )  
-p23/A = dp23/bt (11) 

G(bUl/bX2) - p12/h = bpl2/bt - p22(bvl/bx2) - 1)23(bvl/bX3) (9) 
G(bvI/bx3) - p13/A = bpl3/bt - p23(bvl/dx2) - P33(bUl/dx3) 

If we consider an unsteady motion starting with the fluid in a com- 
pletely relaxed state, all p ,  are initially zero. Thus, the only values for 
p22, p33, and p23 that will satisfy eqs. (7), (8), and (11) are 

p22 = p33 = p23 = 0 (12) 

Substituting the relations (12 )  into eqs. (3) and (4 ) ,  one can show that 
p is a function of X I  only. Differentiating eq. ( 2 )  with respect to x1  shows 
that b p / b x l  is a constant. Hereinafter we shall consider that the pressure 
gradient d p / d x l  is zero, which means that the flow results only from the 
movement of the channel wall at x2 = ti. 

By combining eqs. (a),  (9), and (10) one obtains 

(1/p) (bvJbt) + (1/G) (b2vi/dt2) = ( l / p )  ( b 2 v 1 / b ~ 2 2  + d 2 v ~ / b ~ 3 2 )  (13) 

Equation (13) together with the appropriate boundary conditions defines 
the velocity in the channel as a function of time and position. This 
velocity distribution can be combined, in principle, with eqs. (6), (9), and 
(10) for a calculation of the stress distribution in the channel. Therefore, 
the assumed velocity distribution, assumption (5),  is valid, and no secon- 
dary flow will occur. 

The problem can be further simplified, without alteration of the quali- 
tative results sought, by considering the channel to be of infinite width. 
For this case velocity gradients in the x3 direction vanish, v1 = f ( x 2 ,  t ) ,  
and eq. (13) simplifies to 

( 1 4 )  
The boundary conditions for the case in which the channel wall at x2 = H 

( 1 / ~ )  (bvi/W + ( 1 / G )  (d2vi/bt2) = (l/p) (b281 /d~22)  

is suddenly accelerated from rest to a constant velocity V are : 

At t > 0 and x2 = 0: 
At t > 0 and x2 = H :  

At t = 0 for all x2:  vl = 0 and bvl/bt = 0 
v1 = 0 
v1 = V 

(15) 
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Equation (14) with the boundary conditions (15) has been solved ana- 
lytically, and the solution has the form 

~1 = V ~ Z / H  + V(& + Bn) (16) 

where VxZ/H represents the steady-state velocity profile, and V ( A ,  + B,) 
represents the transient velocity profile: 

N 

n = l  
A, = -C(-l>"+ '2nr sin (nrxz/H){ [exp { ( -1  + an>(Gt/2p)) I/ 

m 

B, = - C (- 1)" + ' 4n~s in  ( n m z / H )  
n = N + l  

where 

a,  = (1 - 4n27r2p2/pGH2)1'2 

@, = (G/p) [(n2a2p2/pGH2) - 1/41"' 

and N is a positive integer, such that 

4N27r2p2/pGH2 < 1 > 4(N + 1)2N2p2/pGH2 

For ordinary polymers 4n2?r2p2/pGH2 > 1 ;  therefore, only B, determines 
the transient velocities. 

TABLE I 
Effect of G, p, and H on t ,  

G P H t t ,  sec. 

108 
1,000~ 

10,000~ 
10 
10 
10 
10 
10 
10 
10 
10 
10 

10,Ooo 
10,000 
10,000 

100b 
1, OOOb 

10, O 0 0 b  
loo, Ooob 

10,000 
10,000 
10,000 
10,000 
10,000 

3 
3 
3 
3 
3 
3 
3 
1C 
2e 
3': 
4e 5c 

12,950(*25) 

30(+10) 
250( f 50) 

1,1oO(f50) 
12,950 ( f 50) 
49,950( +50) 
15,150(+50) 
16,250( *50) 
12,950(+50) 
14,050( +50) 
16,500(+50) 

1 lo( f 10) 

*Effect of G on t , .  
b Effect of p on tt. 
c Effect of H on t , .  
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Discussion of Results from Calculation 

The velocity of viscoelastic fluid in an extruder fluctuates in a very short 
This period (fraction of a second) during the transient period (see Fig. 3). 

.7 

t (sec.) 

Fig. 3. B. (deviation from steady-state velocity) versus time. 
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Fig. 4. Effect, of modulus of elasticity on transient, velocity. 
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qualitative phenomenon has been recently verified, experimentally, by 
Hermes aiid Fredrick~on.~ The amplitude of fluctuation decreases with 
increase of G aiid decrease of p (see Figs. 4 and 5 ) ,  whereas it is insensitive 
to the change of H (see Fig. 6). By examiriiiig the figures we know that 

(Plotted as En vs t 1 
G-10, H.3, ~ 2 = H / 2  

-.? I I I I I I I I 
0 50 100 I50 200 250 300 350 

t ( sec.1 

Fig. 5. Effect of apparent viscosity on transient velocity. 
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(Plotted as En vs t 1 
G = I O , p = l O , O O O ,  x2: H/2 
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t (sec.1 

Fig. 6. Effect of depth of extruder channel on transient velocity. 

0 
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the length of the transient time t ,  varies in the same fashion as the amplitude 
of fluctuatioii. 

Provided experimental correlations between molecular properties of the 
polymeric fluid (such as molecular weight and molecular weight distribu- 
tion) and the parameters G and p have been established, one can predict 
the effect of the molecular properties on the amplitude of volume rate 
fluctuation and the transient period t,. 

This is demonstrated in Table I. 

Conclusion 

The transient volume rate of viscoelastic fluid in an extruder fluctuates 
in a very short period. The amplitude of fluctuation and the transient 
time t t  (needed to restore the steady-state velocity from a disturbance) 
decrease with the increase of elasticity and with the decrease of viscosity 
of the fluid, but they are insensitive to the change of depth of the ex- 
truder channel. 

,* . 
23 
G 
H 
P 

P i j  
t 
4 

Vi 
V 
W 
x i  
x 
P 

Nomenclature 
= Component of rate of strain tensor [see eq. (A)], ser.-’ 
= Modulus of elasticity, g./cm.-aec.2 
= Height of extruder channel, rm. 
= Hydrostatic pressure, g./cm.-sec.2 
= Component of shear stress tensor [see eq. (;)I, g./cm.-sec.2 
= Time, sec. 
= Transient time for restoring steady-state velocity after a disturbance has 

= Velocity component, cm,/sec. 
= Velocity of channel wall a t  2 2  = H ,  cm./ser. 
= Width of extruder channel, cm. 
= Cartesian coordinate, cm. 
= Relaxation time [see eq. ( 5 ) ] ,  see. 
= Apparent viscosity, g . / ~ m . ~  

been imposed, sec. 

Gratitude is extended to J. Vrentas, L. Johns, and L. Dilda, of The now Chemical 
Company, for many illuminating discussions. 
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Rdsumd 
Un modkle simplifi6 est iitilis6 en vue de calculer la vitesse d’un fluide polym6riqne 

dam un extrudeur en fonction du temps. Les propri6tb d’6coulement du fluide sont 
caract6ris6es par une Bquation de caract6risation simple basbe sur deux paramhtres: une 
viscosit6 constante p, et  un module constant d’6lasticit6 G. On a t row6 que la vitesse 
de transition fluctuait periodiquement e t  le temps t l  nBcessaire restaurer la vitesse 
stationnaire au d6part de la perturbation varie avec le rapport G/p et  le groupe sans 
dimensions pHZG/p?, oh p est la densite dn fluide et  H ,  la profondem de la via de I’ex- 
trudeur, 
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Zusammenfassung 
Mittels eiiies vereinfachten Modells wird die zeitabhangige Geschwindigkeit einer 

polymeren Fliissigkeit in einem Extruder berechnet. Die Fliesseigenschfaten der 
Fliissigkeit werden durch eine enfache fundainentale Gleichung charakterisiert, die auf 
zwei Parametern basiert : einer konstanten Viskositat p und einem konstanten Elmtiai- 
tatsmodul G. Es wurde gefunden, dass die augenblickliche Geschwindigkeit periodisch 
schwankt, und dass die Zeit t,, die niitig ist, um nach einer Stiirung die stationare Ge- 
schwindigkeit wiederherzustellen, vom Verhaltnis G/p und vom dimensionslosen Aw- 
druck pH*G/p2 abhangt, wobei p die Diohte der Fliissigkeit, nnd H die Schranbenganghnhe 
des Extrnders ist. 
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